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Abstract: The C17-& subunit 8 of scytophycin C was prepared in 11 steps (19% yield, 83% ds) 
from (q-12. Key features include the dipropionate aldol construction of the stemopentad 11. the 
Brown asymmetric crotylboration leading to 10. followed by their Ba(OH)z-induced, Homer- 
Emmons coupling to give 23, and the BF3*OEtZ-promoted allylation, 25 + 26. 

Scytophycins A-E, isolated from the blue green alga Scytonem pseuubhojinmni, were first reported 

by Moore et al. in 1986.1 They exhibit potent cytotoxicity against KB cells at 1 @ml and broad spectrum 
antifungal activity. Spectroscopic and X-my crystallographic analysis indicated that the scytophycins were a 
novel series of 22-membered macrolides (l-5 in Scheme 1). differing in substitution at Cl6 and C27. with a 
C21 side-chain terminating in an N-methylformamide group. They have a close structural homology with the 
swinholides,2 a group of 44-membered dimeric macrodiolides from Theonefla swinhoei, as shown by 

comparing the secoacids 6 and 7 of scytophycin C and swinholide A, respectively. 
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Scheme 1 

As part of our synthetic studies towards these bioactive marine macrolides.3 we now report the 
enantiocontrolled synthesis of die C17-C32 subunit 8 of the secoacid 6 of scytophycin C. In the accompanying 
Letter?c we describe the synthesis of the corresponding Cl-C16 subunit 9. 
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Scheme 1 summarises our strategy for the synthesis of scytophycin C through 6, involving an aldol 
coupling between the aldehyde 8 and the ethyl ketone 9 to form the Cl&l7 bond. An alternative strategy (not 
shown) is based on a C15-C16 disconnection, i.e. reversing the aldehyde and ethyl ketone aldol components. 
These two inten&ted approaches offer flexibility in the choice of a suitable diasteaeoselective aldol reaction for 
the final fragment coupling. The C17-& segment 8 was anticipated to arise from a Homer-Emmons coupling 
between the ketophosphonate 10 and the aldehyde 11. The latter should be attainable using our general 
synthetic approach4 to such stereopentad@; in this case, by starting from the ketone (S)-12. The keto- 
phosphonate 10 should be available from the aldehyde (n-13 by sn asymmetric crotylboration. These starting 
materials are pnzp& from the commercially available Q-(+)-methyl 2-methyl-3-hydroxypmpionate. 

The synthesis of the Cl&32 segment 8 from (S)-1-benzyloxy-2-methyl-3-pentanone (12)M.f is 
shown in Scheme 2 and outlined below. Aldol addition of the derived Q-enol dicyclohexylborinate 14 to 
methacrolein gave the unti-anti adduc@ 15 in 81% yield and 98% ds. The ketone 15 was reduced with 
MeqNBH(OAc)3 to the corresponding 1,3-c& dlols 16 (94% ds), which was then converted to its di-tert-butyl- 
silylene derivative 176 by reaction with ‘Bu$i(OTf)flutidine in 86% overall yield. The Cu stereocentre was 

next introduced by hydroboration of 17 using Q-BBN, followed by oxidative workup, to give 18, [a]*: = 

-21.3’ (c 0.6, CHCl3). in 61% yield with 93% ds.7 Hence, the required stereopentad 18 was readily prepared 
from (S)-12. using only substrate-induced stereocontrol, in 4 steps with 86% overall ds. Subsequent Swem 
oxidation of 18 then gave the aldehyde 11, [&= -56.9’ (c 0.4, CHC13). in 92% yield. 

The unti-anti stereotriad spanning &-C31 in scytophycin C could be efficiently set up using Brown’s 
asymmetric crotylboration reaction .8 The homoallylic alcohol 19,8*9 synthesised with 95% ds by anti 
crotylboration of the aldehyde (S)-13 with the (E)-crotyldiisopinocampheylborane 20, was then further 
elaborated into the ketophosphonate 10. 0-Methylation, alkene hydroboration with oxidative workup, and O- 
silylation, first transformed 19 into the TIPS ether 21 in 87% yield. Debenzylation of 21, followed by Swem 

oxidation, and addition of lithiated methyl dimethylphosphonate, then gave the b-hydroxyphosphonates 22 in 

72% yield, as a 2:l mixture of C27 epimers. Oxidation of 22 using PDC in DMF provided 10, [&= -59.5’ 
(c 1.9, CHC13). in 82% yield. 

The Homer-Emmons coupling10 between 10 and 11 was investigated under a range of conditions. The 
use of strong bases like NaH led to competing epimerisation and elimination, while the milder Masamune- 
RoushllVRathketlb protocols (e.g. LiCl, iPr2NEt or EtjN, MeCN) either gave little or no reaction, or induced 
B-elimination in the aldehyde 11. In contrast, Ba(OH)2*8H20 (0.8 equiv),lz used with e&molar amounts of 
10 and 11 in aqueous THF (20 ‘C, 3 h), promoted a clean Homer-Emmons reaction to give exclusively the 
Q-enone 23, [a]:= -38.7” (c 0.7, CHC13), in 95% yield. Barium hydroxide appears to be generally useful13 

in promoting efficient Homer-Emmons reactions between complex, epimerisable aldehydes and ketophosphon- 

ates. We have since made use of these novel conditions in several demanding situations in macrolide and 
polyether fragment assembly.14 

Catalytic hydrogenation of 23, in the presence of 10% PdK, led to debenzylation and l&reduction of 
the enone to give the alcohol 24. Dess-Martin oxidation15 of 24 then gave the aldehyde 25, [a]b= -58.3’ (c 
1.0, CHC13). in 88% yield, which was our pivotal intermediate for the synthesis of 8. The remaining Clg 
stereocentre was set up by Lewis acid-promoted allylation of this aldehyde with Felkin-Anh control. The 
reaction of 25 with allyltrimethylsilane in the presence of BF3*OEt2 gave the desired 19,20-syn adduct 26, 
[a]*:= -28.9” (c 1.7, CHC13). with 297% ds in 80% yield. In contrast, the use of Tic4 led to much poorer 
diastereoselectivity, producing a 2: 1 mixture of Cl9 epimers. 0-Methylarion of 26 with MeOTf/2,6-di-tert- 

butylpyridine16 and ozonolysis finally afforded the desired aldehyde 8,6 [a]:= -27.4” (c 0.6. CHC13). in 79% 
yield. 

In summary, the Ct7-C32 subunit 8 of scytophycin C has been synthesised in enantiomerically pute 
form by a highly convergent route in 11 steps (19% yield, 83% ds) from (S)-12. Five of the seven newly 
created stereocentres were installed by a series of substrate-controlled reactions: (i) the boron-mediated aldol 
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reaction, 12 + 15. (ii) the reduction, 15 + 16, (iii) the hydroboration, 17 + 18. and (iv) the allylation, 25 
+ 26, the remaining two relied on a single reagentcontrolled reaction: the crotylboration, 13 + 20 + 19. This 
work further demonstrates the general applicability of our systematic approach4 to the stewcon trolled synthesis 

of polypropionate natural products. Further studies directed towards the total synthesis of scytophycin C via the 
aldol coupling of subuuits 8 and #c are underway. 
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Scheme 2 (a) (c-C~jHll)zBCl, Et3N, E420, -15 “C. 2 h; H$hC(Me)CHO. 2 h; H202, MeOH-pH7 buffer: (6) 
MyNBH(OAch. 1:l MeCN-AcOH. -40 + -24l “C, 16 h; (c) ‘Bu~Si(OTf)~,2&lutidiue. CH$& 2.0 OC, 15 h; (d) 9- 
BBN, THF, 20 Oc, 5-16h; H2~/NaOH. 3 h; (e) (COCI~. DMSO. CH$l2, -78 “C. 1 h; EtaN, -78 + -25 OC, l-2 h; 
v) 20, THF, -78 ‘C, 4 h; HZOZ/NaDH, reflux, 18 h; (s) MeI, NaH, THF, 20 Oc, 17 h; (h) TWSCI, imidazole, CH2CI2, 
20 “C. 90 mix (Q Hz. w/c. l!hOH, 20 “C. 3-6 h; v) (MeOhP(O)Me, *BuLi, THF, -78 Oc, 7 min. Q) FDC, DMF, 30 
“C. 1 h; (I) B&OH~*8H20,4Ozl THF/H~O. 20 “c 3 h; (m) Des-Mad periodhue, CH2Cl2.20 DC. 35 min; (n) 
M@CH&Ii=CH2. BF3=l$O, CIi$lz. -90 + -78 Oc. 90 min; (0) MeOW2,6-di-tert-kutylpyhline, CHCl3, &~Ix, 2 
lx @) 03. NaHC@. 3:l CH2CI$MeOH. -78 “c; Me2S. -78 --f 20 =C. 3 h. 
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