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Studies in Marine Macrolide Synthesis: A Stereocontrolled
Synthesis of a C17—C32 Subunit of Scytophycin C.
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University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: The C17-C32 subunit 8 of scytophycin C was prepared in 11 steps (19% yield, 83% ds)
from (§)-12. Key features include the dipropionate aldol construction of the stereopentad 11, the
Brown asymmetric crotylboration leading to 10, followed by their Ba(OH)2-induced, Horner-
Emmons coupling to give 23, and the BF3¢OEty-promoted allylation, 25 — 26.

Scytophycins A-E, isolated from the blue green alga Scytonema pseudohofmanni, were first reported
by Moore et al. in 1986.1 They exhibit potent cytotoxicity against KB cells at 1 ng/mi and broad spectrum
antifungal activity. Spectroscopic and X-ray crystallographic analysis indicated that the scytophycins were a
novel series of 22-membered macrolides (1-5 in Scheme 1), differing in substitution at C1 and C27, with a
C»; side-chain terminating in an N-methylformamide group. They have a close structural homology with the
swinholides,2 a group of 44-membered dimeric macrodiolides from Theonella swinhoei, as shown by
comparing the secoacids 6 and 7 of scytophycin C and swinholide A, respectively.
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As part of our synthetic studies towards these bioactive marine macrolides,3 we now report the
enantiocontrolled synthesis of the C17-C32 subunit 8 of the secoacid 6 of scytophycin C. In the accompanying
Letter,3¢ we describe the synthesis of the corresponding C1—Cig subunit 9.
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Scheme 1 summarises our strategy for the synthesis of scytophycin C through 6, involving an aldol
coupling between the aldehyde 8 and the ethyl ketone 9 to form the C16-C17 bond. An alternative strategy (not
shown) is based on a C15-Cj¢ disconnection, i.e. reversing the aldehyde and ethyl ketone aldol components.
These two interrelated approaches offer flexibility in the choice of a suitable diastereoselective aldol reaction for
the final fragment coupling. The C17-C32 segment 8 was anticipated to arise from a Homer-Emmons coupling
between the ketophosphonate 10 and the aldehyde 11. The latter should be attainable using our general
synthetic approach? to such stereopentads4?; in this case, by starting from the ketone (§5)-12. The keto-
phosphonate 10 should be available from the aldehyde (5)-13 by an asymmetric crotylboration. These starting
materials are prepared4df from the commercially available (S)-(+)-methyl 2-methyl-3-hydroxypropionate.

The synthesis of the C17-C32 segment 8 from (S)-1-benzyloxy-2-methyl-3-pentanone (12)44:f is
shown in Scheme 2 and outlined below. Aldol addition of the derived (E)-enol dicyclohexylborinate 14 to
methacrolein gave the anti-anti adduct4® 15 in 81% yield and 98% ds. The ketone 15 was reduced with
Me4NBH(OAC)3 to the corresponding 1,3-anti diol’ 16 (94% ds), which was then converted to its di-terr-butyl-
silylene derivative 176 by reaction with BuySi(OTf)s/lutidine in 86% overall yield. The Cz4 stereocentre was
next introduced by hydroboration of 17 using 9-BBN, followed by oxidative workup, to give 18, [aﬁ%’ =
-21.3° (¢ 0.6, CHCl3), in 61% yield with 93% ds.” Hence, the required stereopentad 18 was readily prepared
from (S)-12, using only substrate-induced stereocontrol in 4 steps with 86% overall ds. Subsequent Swern
oxidation of 18 then gave the aldehyde 11, [a] D = -56.9° (c 0.4, CHCl3), in 92% yield.

The anti-anti stereotriad spanning C27-C31 in scytophycin C could be efficiently set up using Brown’s
asymmetric crotylboration reaction.8 The homoallylic alcohol 19,8.9 synthesised with 95% ds by anti
crotylboration of the aldehyde (S5)-13 with the (E)-crotyldiisopinocampheylborane 20, was then further
elaborated into the ketophosphonate 10. O-Methylation, alkene hydroboration with oxidative workup, and O-
silylation, first transformed 19 into the TIPS ether 21 in 87% yield. Debenzylation of 21, followed by Swern
oxidation, and addition of lithiated methy] dimethylphosphonate, then gave the B-hydroxyphosphonates 22 in
72% yield, as a 2:1 mixture of C27 epimers. Oxidation of 22 using PDC in DMF provided 10, [a]%’: -59.5°
(c 1.9, CHClj), in 82% yield.

The Horner-Emmons coupling0 between 10 and 11 was investigated under a range of conditions. The
use of strong bases like NaH led to competing epimerisation and elimination, while the milder Masamune-
Roush!12/Rathke!1b protocols (e.g. LiCl, ‘ProNEt or Et3N, MeCN) either gave little or no reaction, or induced
B-elimination in the aldehyde 11. In contrast, Ba(OH)2¢8H20 (0.8 equiv),12 used with equimolar amounts of
10 and 11 in aqueous THEF (20 °C, 3 h), promoted a clean Horner-Emmons reaction to give exclusively the
(E)-enone 23, [a] D =-38.7° (¢ 0.7, CHCl3), in 95% yield. Barium hydroxide appears to be generally useful13
in promoting efficient Horner-Emmons reactions between complex, epimerisable aldehydes and ketophosphon-
ates. We have since made use of these novel conditions in several demanding situations in macrolide and
polyether fragment assembly.14

Catalytic hydrogenation of 23, in the presence of 10% Pd/C, led to debenzylation and 1,4-reduction of
the enone to give the alcohol 24. Dess-Martin oxidation15 of 24 then gave the aldehyde 25, [a]® = -58.3° (c
1.0, CHCI3), in 88% yield, which was our pivotal intermediate for. the synthesis of 8. The remaining Cj9
stereocentre was set up by Lewis acid-promoted allylation of this aldehyde with Felkin-Anh control. The
reactlon of 25 with allyltrimethylsilane in the presence of BF3¢0Etp gave the desired 19,20-syn adduct 26,
[a] D— —28.9° (¢ 1.7, CHCl3), with 297% ds in 80% yield. In contrast, the use of TiClg led to much poorer
diastereoselectivity, producing a 2:1 mixture of C19 epimers. O-Methylation of 26 with MeOT{/2,6-di-tert-
butylpyridine!6 and ozonolysis finally afforded the desired aldehyde 8,6 [a]%°= -27.4° (¢ 0.6, CHCI3), in 79%
yield.

In summary, the C17-C32 subunit 8 of scytophycin C has been synthesised in enantiomerically pure
form by a highly convergent route in 11 steps (19% yield, 83% ds) from (§)-12. Five of the seven newly
created stereocentres were installed by a series of substrate-controlied reactions: (i) the boron-mediated aldol



5349

reaction, 12 — 15, (ii) the reduction, 15 — 16, (iii) the hydroboration, 17 — 18, and (iv) the allylation, 2§
— 26; the remaining two relied on a single reagent-controlled reaction: the crotylboration, 13 + 20 — 19. This
work further demonstrates the general applicability of our systematic approach? to the stereocontrolled synthesis
of polypropionate natural products. Further studies directed towards the total synthesis of scytophycin C via the
aldol coupling of subunits 8 and 93¢ are underway.
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Scheme 2 (a) (c-CgH11)2BCL Et3N, Et0O, -15 °C, 2 b; HoC=C(Me)CHO, 2 h; Hy02, MeOH-pH7 buffer; (b)
MegNBH(OAC)3, 1:1 MeCN-AcOH, —40 — ~20 °C, 16 b; (c) ‘BugSi(OTf),, 2,6-lutidine, CH,Cly, 20 °C, 15 b; (d) 9-
BEN, THF, 20 °C, 5-16h; H202/NaOH, 3 h; (¢) (COCl);, DMSO, CH;Cly, ~78 °C, 1 b; EN, =78 — =25 °C, 1-2 I;
() 20, THF, 78 °C, 4 h; Hy02/NaOH, reflux, 18 h; (g) Mel, NaH, THF, 20 °C, 17 h; (k) TIPSCI, imidazole, CHyCly,
20 °C, 90 min; (i) Ha, PA/C, EtOH, 20 °C, 3-6 b; (j) (MeO)2P(O)Me, "BuLi, THF, -78 °C, 7 min; (k) PDC, DMF, 30
°C, 1 h; (/) Ba(OH)2e8H20, 40:1 THF/H0, 20 °C, 3 b; (m) Dess-Martin periodinane, CH2Cly, 20 °C, 35 min; (1)
Me3SiCH2CH=CHa, BF3¢Etz0, CHCly, ~90 — 78 °C, 90 min; (0) MeOT/2,6-di-tert-butylpyridine, CHCla, reflux, 2
b; (p) O, NaHCO3, 3:1 CHaClo/MeOH, ~78 °C; Me3S, ~78 — 20°C, 3 h.
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